Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Metal carbides, nitrides, or carbonitrides of early transition metals, better known as MXenes, possess notable structural, electrical, and magnetic properties. Analyzing electronic structures by calculating structural stability, band structure, density of states, Bader charge transfer, and work functions utilizing first principle calculations, we revealed that titanium nitride MXenes, namely TiN and TiN, have excess anionic electrons in their lattice voids, making them MXene electrides. Bulk TiN has competing antiferromagnetic (AFM) and ferromagnetic(FM) configurations with slightly more stable AFM configuration, while the TiN MXene is nonmagnetic. Although TiN favors AFM configuration with hexagonal crystal systems having point group symmetry, TiN does not support altermagnetism. The monolayer of the TiN MXene is a ferromagnetic electride. These unique properties of having non-nuclear interstitial anionic electrons in the electronic structure of titanium nitride MXene have not yet been reported in the literature. Density functional theory calculations show TiN is neither an electride, MXene, or magnetic.more » « lessFree, publicly-accessible full text available January 13, 2027
-
Free, publicly-accessible full text available September 1, 2026
-
We report the intercalation of polyacrylonitrile nanoparticles in Ti3C2Tx MXene layers through simple sonication. The use of polyacrylonitrile, which was synthesized via radical polymerization, offered dual benefits: (1) It increased the interlayer spacing of MXene, thereby exposing more surface area and enhancing ion transport channels during charge and discharge cycles, and (2) Integrating MXene with polyacrylonitrile enables the creation of a composite with conductive properties, following percolation principle. X-ray diffraction analysis showed an increase in the c-lattice parameter, indicative of the interlayer spacing, from 22.31 Å for the pristine MXene to 37.73 Å for the MXene−polyacrylonitrile composite. The intercalated polyacrylonitrile nanoparticles facilitated the delamination by weakening the interlayer interactions, especially during sonication. Electrochemical assessments revealed significant improvement in the properties of the MXene−polyacrylonitrile composite compared to the pristine MXene. The assembled asymmetric device achieved a good specific capacitance of 32.1 F/g, an energy density of 11.42 W h/kg, and 82.2% capacitance retention after 10,000 cycles, highlighting the practical potential of the MXene−polyacrylonitrile composite.more » « less
-
Lignocellulose fiber obtained from high-altitude plant species Daphne bholua and Daphne papyracea, locally named Lokta bushes, is used in Asian regions to fabricate high-quality handmade paper sheets, packaging materials, composites, and paper bills. A systematic study on the material properties of the fiber to explain the performance of Lokta fiber–based materials has not been reported yet. In this study, the physio-chemical properties of untreated and 1%, 3%, 6%, and 9% NaOH (w/v)-treated Lokta fiber were systematically investigated at ambient temperature. The retting efficiency and cellulose content increased with alkali concentration followed by a decrease in lignin, hemicellulose, and extractives. This observation was consistent with the reduction of lignin and hemicellulose characteristics peaks in the FTIR, a reduction of effective fiber bundle width, and an increase in fiber density. High-resolution scanning electron microscope (SEM) images showed that alkali treatment results in significant loss of cementing materials and separation of fiber bundles. Alkali retting also increased the crystallinity index, tensile strength, and thermal stability. The degradation temperature for untreated, 6% NaOH treated, and 9% NaOH treated samples was found to be 325 °C, 343 °C, and 347 °C; respectively. The findings of this study will be important to optimize the end properties of the Lokta fiber–based paper and composite materials.more » « less
-
We present a theoretical study on the energy dispersion of an ultrathin film of periodically-aligned single-walled carbon nanotubes (SWCNTs) with the help of the Bogoliubov–Valatin transformation. The Hamiltonian of the film was derived using the many-particle green function technique in the Matsubara frequency formalism. The periodic array of SWCNTs was embedded in a dielectric with comparatively higher permittivity than the substrate and the superstrate such that the SWCNT film became independent with the axis of quantization but keeps the thickness as the variable parameter, making the film neither two-dimensional nor three-dimensional, but transdimensional. It was revealed that the energy dispersion of the SWCNT film is thickness dependent.more » « less
An official website of the United States government
